Maturing the production standards of ultraporous oank operating on swinging temperatures and low structures for high density hydrogen storage **ST3RBoost** 1 compression" 56



# D1.4. Harmonized Data Gathering Methodology

Due date of submission: 10/11/2022 Actual submission date: 27/10/2022



Funded by the European Union





# **TABLE OF CONTENTS**

| 1. | TABLE OF CONTENTS                        | 2 |
|----|------------------------------------------|---|
| 2. | PROJECT INFORMATION                      | 3 |
| 3. | DELIVERABLE DETAILS                      | 4 |
| 1. | Data Management Infrastructure           | 5 |
| 2. | Data Ontology                            | 6 |
| 3. | Methodology for harmonized data entering | 8 |





## **PROJECT INFORMATION**

<u>Project full title</u>: Maturing the production standards of ultraporous structures for high density hydrogen storage bank operating on swinging temperatures and low compression

Acronym: MAST3RBoost

Call: HORIZON-CL4-2021-RESILIENCE-01

Topic: HORIZON-CL4-2021-RESILIENCE-01-17

Start date: 1st June 2022

Duration: 48 months

List of participants:

| Number | Name of beneficiary                             | Acronym of<br>beneficiary | Country      |
|--------|-------------------------------------------------|---------------------------|--------------|
| 1      | ENVIROHEMP                                      | ENV                       | Spain        |
| 2      | CONTACTICA                                      | СТА                       | SPAIN        |
| 3      | Consejo Superior de Investigaciones Científicas | CSIC                      | Spain        |
| 4      | Spike Renewables Srl                            | SPIKE                     | Italy        |
| 5      | EDAG Engineering GmbH                           | EDAG                      | Germany      |
| 6      | Nanolayers                                      | NANO                      | Estonia      |
| 7      | FUNDACIÓN CIDETEC                               | CIDETEC                   | Spain        |
| 8      | Leichtmetallkompetenzzentrum Ranshofen GmbH     | LKR                       | Austria      |
| 9      | University of Pretoria                          | UP                        | South Africa |
| 10     | Council for Scientific and Industrial Research  | CSIR                      | South Africa |
| 11     | PSA                                             | PSA                       | Portugal     |
| 12     | TWI Ltd                                         | TWI                       | UK           |
| 13     | University of Nottingham                        | UoN                       | UK           |





## **DELIVERABLE DETAILS**

| Document Number:    | D1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document Title:     | Harmonised Data Gathering Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dissemination level | PU – Public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Period:             | PR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WP:                 | WP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Task:               | T1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Author:             | Nanolayers 00<br><b>Nanolayers</b> 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Abstract:           | Nanolayers has developed LabCore, a digital notebook platform specifically designed to tackle the challenges of storing and managing scientific data. By applying its formatting standards to all uploaded data, LabCore reduces many of the barriers that make the inherently heterogeneous scientific data difficult to access and reuse. The metadata system was enriched, thus providing an intuitive tagging system that make data clearly understandable and quickly sorted into queries for machine-learning applications. |





#### Data Management Infrastructure

The project's data will be managed using LabCore Digital Notebook Platform developed by Nanolayers. This tool is specifically designed for scientists to store and curate their data into digital notebooks, perform analysis tasks, create visualisations and easily share it with collaborators. The server has been deployed (<u>https://labcore.nanolayers.com</u>) and is now accessible by all the consortium members that need to operate with the data in anyway.

The most important aspect of LabCore is its ability to parse raw-data files and extract the data into wellformatted data records (Figure 1). This way, a table column, for example, becomes a 1D array data record, formatted in the same way as all 1D array records regardless of their origin. LabCore understands only a few basic data types, such as arrays, matrixes, and images, however, its data architecture is modular and allows us to easily define new, compound data types that encapsulate multiple basic records into a single data entity. This is useful when a single experiment produces multiple pieces of data in a single measurement.

|                                                                     | laboore nanolement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | com/notebook@wid4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62c3f73e24caecdfac5                                                                                                                                                                                                      | b91fe                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                              | ie 🖈 🖬 🙂 🕸 🛸 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| û (*                                                                | labcore.nanolayers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | com/notebooknuid/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62C3173e24CaeCd1aC5                                                                                                                                                                                                      | 09116                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      | SAVE                                                                                                                                         | 6 <i>🗉</i>   |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      | X,X°⊻₩Ū©∞∞∞∞∞∞∞                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
| ▲ 1 Mo                                                              | lecular Assem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | blv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
| Structure                                                           | 1: an example molecu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ule for this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | molecule in Structure                                                                                                                                                                                                    | ne 1. The structure                                                                                                                                                                                 | ne var taken from                                                                                                                                                                                                                                                                    |                                                                                                                                              |              |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | molecule in Structur                                                                                                                                                                                                     | re 1. The structur                                                                                                                                                                                  | ire was taken from                                                                                                                                                                                                                                                                   | $P_{10}Chen$ . The annealing temperature is $T_0=350K$ . The energy of the molecule is $E_0=7.6331470600376616$ kmapermode.                  |              |
| calculated                                                          | d the groundstate co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onfiguration of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | re 1. The structur                                                                                                                                                                                  | ire was taken from                                                                                                                                                                                                                                                                   | $\underline{P_{0}Chee}$ . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147000370016{\rm kcalpermode}$ . |              |
| Table 1:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onfiguration of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          | re 1. The structur<br>Max Displace                                                                                                                                                                  | ne was taken from<br>RMS Displace                                                                                                                                                                                                                                                    | $P_{\rm MGZ, EE}$ . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147060376816$ kealpermode.             |              |
| calculated                                                          | d the groundstate co<br>Geometry optimisation<br>Total Emergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onfiguration of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RMS Force                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      | $r_{EdChee}$ . The annealing temperature is $T_0=300$ K. The energy of the molecule is $E_0=7.6331470600376016$ kmalpermode.                 |              |
| Table 1:                                                            | d the groundstate co<br>Geometry optimisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | neport from DFT soft<br>Max Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | biane.                                                                                                                                                                                                                   | Max Displace                                                                                                                                                                                        | RMS Displace                                                                                                                                                                                                                                                                         | <u>Pulches</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $K_0=7.633147060370610$ keepermode.                 |              |
| Table 1:<br>Step                                                    | d the groundstate co<br>Geometry optimisation<br>Total Energy<br>hartree 🗞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nreport from DFT soft<br>Max Force<br>hartree/bohr %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mare.<br>RMS Force<br>hartree/bohr ∾                                                                                                                                                                                     | Max Displace<br>bohr ∾                                                                                                                                                                              | RMS Displace<br>bohr 🦠                                                                                                                                                                                                                                                               | $\underline{P_{10}Charge}$ . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147060376816$ kealpermode.    |              |
| Table 1:<br>Step                                                    | d the groundstate co<br>Geometry optimisation<br>Total Emergy<br>hartree<br>-987.4326555797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | neport from DFT soft<br>Max Force<br>hartree/bohr<br>0.13340491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMS Force<br>hartree/bohr %<br>0.03601451                                                                                                                                                                                | Max Displace<br>bohr %<br>0.13623582                                                                                                                                                                | RMS Displace<br>bohr %                                                                                                                                                                                                                                                               | <u>PutChes</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $K_0=7.633147060370616  {\rm kcalpermode}$ .        |              |
| Table 1:<br>Table 1:<br>Step<br>1<br>2<br>3<br>4                    | d the groundstate co<br>Geometry optimisation<br>Total Energy<br>hartree<br>-987.4326555797<br>-987.4326555797<br>-987.432651249<br>-987.5137876296<br>-987.5177595883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nreport from DFT soff<br>Max Force<br>hartree/bohr ≫<br>0.13340491<br>0.06261476<br>0.0184058<br>0.088558<br>0.080672149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mare.<br>RMS Force<br>hartree/bohr ≫<br>0.03601451<br>0.01680708<br>0.00544621<br>0.00286801                                                                                                                             | Max Displace<br>bohr ⊗<br>0.13623582<br>0.99617422<br>0.28536504<br>0.5733996                                                                                                                       | RMS Displace<br>bohr ♥<br>0.04041588<br>0.04027072<br>0.0589248<br>0.11322772                                                                                                                                                                                                        | <u>PutChes</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.6331470603706116  {\rm kcalpermode}$ .       |              |
| Table 1:<br>Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5               | d the groundstate co<br>Geometry optimisation<br>Total Energy<br>hartree<br>→<br>-987.4326555797<br>-987.4942571249<br>-987.5137876296<br>-987.51377595883<br>-987.5174310528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hreport from DFT soft     Nax Force     hartree/bohr      0.13340491     0.06251476     0.0184536     0.085254     0.0852149     0.0861203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMS Force<br>hartree/bohr ≫<br>0.03601451<br>0.01580708<br>0.00544621<br>0.00254681<br>0.00274686                                                                                                                        | Max Displace<br>bohr ⊗<br>0.13623582<br>0.89617422<br>0.28536584<br>0.5733996<br>0.41946662                                                                                                         | RHS Displace<br>bohr %<br>0.04041588<br>0.04027072<br>0.0589248<br>0.11322772<br>0.11322883                                                                                                                                                                                          | <u>PucKee</u> . The annealing temperature is $T_{\rm b}=350K$ . The energy of the molecule is $E_{\rm b}=7.6331470600376816$ kmapermode.     |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6                      | d the groundstate cc<br>Geometry optimisation<br>Total Energy<br>Martree<br>-987,4326555797<br>-987,4326555797<br>-987,51737876296<br>-987,51737955883<br>-987,5174310528<br>-987,5174341933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: second | RMS Force           hartree/bohr            0.03601451           0.01680708           0.00544621           0.0026801           0.00274686           0.00375004                                                           | Max Displace           bohr <>           0.13623582           0.99617422           0.28536504           0.733996           0.41946662           0.11157405                                          | RMS Displace<br>bohr &<br>0.04041588<br>0.04027072<br>0.0589248<br>0.11322772<br>0.11322833<br>0.02830693                                                                                                                                                                            | <u>PutCher</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.6331470003700104 kmapermode.$                |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7                 | s the groundstate co<br>Geonetry optimisation<br>Total Energy<br>hartree<br>-987.432655797<br>-987.517759583<br>-987.51741828<br>-987.51741828<br>-987.51741828<br>-987.51741828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | negort from D≠T soff<br>Max Force<br>hartree/bohr ≫<br>0.3340491<br>0.061476<br>0.0184556<br>0.00872149<br>0.00852149<br>0.00852135<br>0.01985561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BWS Force<br>hartree/bohr №<br>0.03601451<br>0.03601451<br>0.00546421<br>0.002246801<br>0.00224680<br>0.00274686<br>0.00375004<br>0.00357382                                                                             | Nax Displace           bohr ♥           0.13623582           0.99617422           0.28536504           0.5733996           0.1157405           0.1957227                                            | RHS Displace<br>bohr №<br>0.04041588<br>0.04027072<br>0.0589248<br>0.11322772<br>0.11322883<br>0.02830693<br>0.02830729                                                                                                                                                              | <u>PuClue</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147060376816$ kmapermode.                  |              |
| Table 1:<br>Step<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8       | the groundstate cc<br>seconetry optimisation<br>Total Energy<br>hartree %<br>-987.4526555797<br>-987.45425571249<br>-987.5174240525<br>-987.5174340528<br>-987.5174340528<br>-987.5174340528<br>-987.5174340528<br>-987.5174340528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nriguration of the<br>nreport from DFT soff<br>Nax Force<br>hartree/bohr<br>0.13340401<br>0.05251476<br>0.04251476<br>0.04251476<br>0.04251476<br>0.04251476<br>0.04251215<br>0.0435561<br>0.0435561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BMS Force<br>hartre/bohr ≫<br>0.03601451<br>0.0360708<br>0.00544621<br>0.00256801<br>0.00274686<br>0.00375004<br>0.00357382<br>0.00154171                                                                                | Max Displace<br>bohr ♥<br>0.13623582<br>0.26536504<br>0.26536504<br>0.41946662<br>0.1157405<br>0.09472227<br>0.02529884                                                                             | RMS Displace           bohr <                                                                                                                                                                                                                                                        | <u>PutCres</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147000370616  {\rm kcalpermode}$ .        |              |
| Table 1:<br>Step<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9  | the groundstate cc<br>Geometry optimisation<br>Total Energy<br>-067.4326555797<br>-087.4942571249<br>-087.517495883<br>-087.517441892<br>-087.517441892<br>-087.5194680801<br>-087.5194680801<br>-087.5194680801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nriguration of the<br>report from DF soft<br>Max Force<br>hartrec/bohr<br>0.13340401<br>0.0254176<br>0.04052149<br>0.04052149<br>0.0405215<br>0.04055561<br>0.04055561<br>0.04055561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RNS Force<br>hatree/bohr %<br>0.03601451<br>0.00544621<br>0.00554621<br>0.0055466<br>0.00375004<br>0.00375004<br>0.00357382<br>0.00151272                                                                                | Max Displace<br>bohr<br>0.13623582<br>0.09617422<br>0.28536504<br>0.41946662<br>0.11157405<br>0.04525804<br>0.02528084<br>0.02528084                                                                | RMS Displace           bohr %           0.04041580           0.8427072           0.0589248           0.11322772           0.1322283           0.02830693           0.02830729           0.08977711           0.0977676                                                               | <u>Pucture</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.633147060376816$ kmapermode.                 |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | the groundstate cc<br>decometry optimisation<br>Total Energy<br>hartree<br>-987.4326555797<br>-987.4942571249<br>-987.5137461265<br>-987.51374316528<br>-987.51374316528<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.513948888<br>-987.513948888<br>-987.51394888<br>-987.51394888<br>-987.51394888<br>-987.5139488<br>-987.5139488<br>-987.5139488<br>-987.5139488<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.51394<br>-987.513948<br>-987.513948<br>-987.513948<br>-987.51394<br>-987.513948<br>-987.51394<br>-987.513948<br>-987.51394<br>-987.513948<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394<br>-987.51394 | nriguration of the<br>neport far on DT soft<br>har treez/boh %<br>0.33340491<br>0.06581476<br>0.01584586<br>0.0052149<br>0.001285561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BMS Force<br>hartre/bohr ≫<br>0.03601451<br>0.0360708<br>0.00544621<br>0.00256801<br>0.00274686<br>0.00375004<br>0.00357382<br>0.00154171                                                                                | Max Displace           bohr %           0.13623582           0.09617422           0.2535504           0.41946662           0.1157405           0.092228084           0.09228081           0.0951202 | RHS Displace           bohr %           0.04041588           0.04041588           0.04027072           0.11322772           0.11322772           0.11322772           0.02830693           0.02830693           0.02830729           0.0287771           0.027775           0.021202 | <u>PulCher</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $K_0=7.633147060370610$ kealpermode.                |              |
| Table 1:<br>Step<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9  | the groundstate cc<br>Geometry optimisation<br>Total Energy<br>-067.4326555797<br>-087.4942571249<br>-087.517495883<br>-087.517441892<br>-087.517441892<br>-087.5194680801<br>-087.5194680801<br>-087.5194680801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nriguration of the<br>report from DF soft<br>Max Force<br>hartrec/bohr<br>0.13340401<br>0.0254176<br>0.04052149<br>0.04052149<br>0.0405215<br>0.04055561<br>0.04055561<br>0.04055561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RNS Force<br>hatree/bohr %<br>0.03601451<br>0.00544621<br>0.00554621<br>0.0055466<br>0.00375004<br>0.00375004<br>0.00357382<br>0.00151272                                                                                | Max Displace<br>bohr<br>0.13623582<br>0.09617422<br>0.28536504<br>0.41946662<br>0.11157405<br>0.04525804<br>0.02528084<br>0.02528084                                                                | RMS Displace           bohr %           0.04041580           0.8427072           0.0589248           0.11322772           0.1322283           0.02830693           0.02830729           0.08977711           0.0977676                                                               | <u>Fuctors</u> . The annealing temperature is $T_0=300K$ . The energy of the molecule is $E_0=7.6331470603706164$ kmapermode.                |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | the groundstate cc<br>decometry optimisation<br>Total Energy<br>hartree<br>-987.4326555797<br>-987.4942571249<br>-987.5137461265<br>-987.51374316528<br>-987.51374316528<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.513948781688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nriguration of the<br>neport fars not soft<br>har treez/boh %<br>0.33340491<br>0.06581476<br>0.01584586<br>0.0052149<br>0.001285561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Narfe.<br>RRS Force<br>hartree/bohr % 0<br>0.0350145<br>0.035045<br>0.0035601<br>0.00276680<br>0.0037362<br>0.0037362<br>0.00357362<br>0.00357362<br>0.00357362<br>0.003517362<br>0.00351732<br>0.00351732<br>0.00051931 | Max Displace           bohr %           0.13623582           0.09617422           0.2535504           0.41946662           0.1157405           0.092228084           0.09228081           0.0921202 | RHS Displace           bohr %           0.04041588           0.04041588           0.04027072           0.11322772           0.11322772           0.11322772           0.02830693           0.02830693           0.02830729           0.0287771           0.027775           0.021202 | <u>PuiCtes</u> . The annealing temperature is $T_0 = 300K$ . The energy of the molecule is $K_0 = 7.633147000370010$ kmalpermode.            |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | the groundstate cc<br>decometry optimisation<br>Total Energy<br>hartree<br>-987.4326555797<br>-987.4942571249<br>-987.5137461265<br>-987.51374316528<br>-987.51374316528<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.5139488081<br>-987.513948781688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nriguration of the<br>neport fars not soft<br>har treez/boh %<br>0.33340491<br>0.06581476<br>0.01584586<br>0.0052149<br>0.001285561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Narfe.<br>RRS Force<br>hartree/bohr % 0<br>0.0350145<br>0.035045<br>0.0035601<br>0.00276680<br>0.0037362<br>0.0037362<br>0.00357362<br>0.00357362<br>0.00357362<br>0.003517362<br>0.00351732<br>0.00351732<br>0.00051931 | Max Displace           bohr %           0.13623582           0.09617422           0.2535504           0.41946662           0.1157405           0.092228084           0.09228081           0.0921202 | RHS Displace           bohr %           0.04041588           0.04041588           0.04027072           0.11322772           0.11322772           0.11322772           0.02830693           0.02830693           0.02830729           0.0287771           0.027775           0.021202 | <u>PutChes</u> . The annealing temperature is $T_0 = 300K$ . The energy of the molecule is $E_0 = 7.6331470603706164$ kmapermode.            |              |
| Table 1:<br>Step<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | a the groundstate cc<br>Geometry optimilisation<br>Total Emergy<br>hartree %<br>-087.4326555797<br>-087.4326555797<br>-087.513278268<br>-087.513704288<br>-087.5137043028<br>-087.5137043028<br>-087.51310408032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.51310808032<br>-087.5131080803<br>-087.5131080803<br>-087.5131080803<br>-087.5131080803<br>-087.5131080803<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.513108080<br>-087.51308080<br>-087.51308080<br>-087.51308080<br>-087.51308080<br>-087.51308080<br>-087.51308080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.5108080<br>-087.51080                                                       | nriguration of the<br>neport fars not soft<br>har treez/boh %<br>0.33340491<br>0.06581476<br>0.01584586<br>0.0052149<br>0.001285561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561<br>0.01585561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Narfe.<br>RRS Force<br>hartree/bohr % 0<br>0.0350145<br>0.035045<br>0.0035601<br>0.00276680<br>0.0037362<br>0.0037362<br>0.00357362<br>0.00357362<br>0.00357362<br>0.003517362<br>0.00351732<br>0.00351732<br>0.00051931 | Max Displace           bohr %           0.13623582           0.09617422           0.2535504           0.41946662           0.1157405           0.092228084           0.09228081           0.0921202 | RHS Displace           bohr %           0.04041588           0.04041588           0.04027072           0.11322772           0.11322772           0.11322772           0.02830693           0.02830693           0.02830729           0.0287771           0.027775           0.021202 | <u>PuiCings</u> . The annealing temperature is $T_0 = 300K$ . The energy of the molecule is $E_0 = 7.633147080370810$ kmalpermode.           | Poerred      |

Figure 1: LabCore demonstration notebook showing a molecular structure and its calculation details imported directly from raw data files.

Thanks to its standardised formatting policy, all data uploaded into LabCore notebooks can then be consumed by the notebook elements to create visualisations and processed results (also in the form of data records), and used by collaborators without requiring the original instrument software (Figure 2). Moreover, a powerful Python API was also implemented, giving advanced computational users the ability to query the data, and downloading it already neatly formatted for consumption by machine-learning workflows.

The rich metadata system allows user to add tags to their data. This can be used to embed information about measurement methods and conditions into the data records, as well as labelling them with their designated ontology, making clear to any consumer (user or application) what the data represents.

As such, LabCore is an optimal solution for collecting the inherently heterogeneous scientific data, harmonising and making it truly Findable, Accessible, Interoperable and Reusable.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European Union nor the granting authority can be held responsible for them. Page 5 of 9





| He Calculat | ed the groundstate c               | ontiguration of the   | molecule in Scructu      | re 1. The structu | re was taken from | $\underline{hem}$ . The annealing temperature is $T_0=350K$ . The energy of the molecule is $E_0=7.633147660376816$ kcalpermole. |  |
|-------------|------------------------------------|-----------------------|--------------------------|-------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|             | Geometry optimisation              |                       |                          |                   |                   |                                                                                                                                  |  |
| Step        | Total Energy                       | Max Force             | RMS Force                | Max Displace      | RMS Displace      |                                                                                                                                  |  |
| 1           | hartree 🛇                          | hartree/bohr 🦠        | hartree/bohr 📎           | bohr 📎            | bohr 📎            |                                                                                                                                  |  |
| 1           | -987.4326555797                    | 0.13340491            | 0.03601451               | 0.13623582        | 0.04041588        |                                                                                                                                  |  |
| 2           | -987.4942571249<br>-987.5137876296 | 0.06261476 0.01848358 | 0.01580708<br>0.00544621 | 0.09617422        | 0.04027072        |                                                                                                                                  |  |
| 4           | -987.5177595883                    | 0.00872149            | 0.00286801               | 0.5733996         | 0.11322772        |                                                                                                                                  |  |
| 5           | -987.5174310528                    | 0.0081203             | 0.00274686               | 0.41946662        | 0.11322883        |                                                                                                                                  |  |
| 6           | -987.5174341932                    | 0.0152315             | 0.00375004               | 0.11157405        | 0.02830693        |                                                                                                                                  |  |
| 7           | -987.5191685081                    | 0.01985561            | 0.00357382               | 0.09472227        | 0.02830729        |                                                                                                                                  |  |
| 8           | -987.5196080392                    | 0.00541131            | 0.00154171               | 0.02529884        | 0.00707711        |                                                                                                                                  |  |
| 9           | -987.5193830132                    | 0.01598741            | 0.00317172               | 0.0230011         | 0.00707676        |                                                                                                                                  |  |
| 10          | -987.5198701688                    | 0.00234098            | 0.00061931               | 0.09651202        | 0.0212302         |                                                                                                                                  |  |
|             |                                    |                       |                          |                   |                   |                                                                                                                                  |  |
|             |                                    |                       |                          |                   | force (n6)        | BIS Force vis Step                                                                                                               |  |
| Figure 1    | : Plot of relaxation               | forces.               |                          |                   | 0                 | 10 13 20 15 30<br>Step [wittess]                                                                                                 |  |

Figure 2: plotting tools in LabCore notebooks let users create visualisations from uploaded data, keeping track of how the plot was constructed.

Nanolayers ran tutorial sessions in July 2022 for all project partners that potentially need to upload and share, or receive, data. Since the partners are expected to hire researchers throughout the duration of the project, more general use, as well as targeted use-case, tutorial sessions will be organised upon request.

## **1. DATA ONTOLOGY**

Combining the input from all Mast3rBOOST partners, Nanolayers has compiled a list of data that users are expected to obtain from their instruments (Table 1).

| Experiment                              | Data ontology               | Data Type | Physical units         |
|-----------------------------------------|-----------------------------|-----------|------------------------|
| N. edecurtion is the man                | relative pressure           | 1D array  | adimensional           |
| N <sub>2</sub> adsorption isotherms     | amount of N2 adsorbed       | 1D array  | cm <sup>3</sup> /g STP |
|                                         | time                        | 1D array  | S                      |
| the sum a sum time state and to be      | temperature                 | 1D array  | °C                     |
| thermogravimetric analysis              | weight                      | 1D array  | mg                     |
|                                         | weight derivative           | 1D array  | adimensional           |
| N. edecurtics is the unce               | relative pressure           | 1D array  | adimensional           |
| N <sub>2</sub> adsorption isotherms     | volume $N_2$ absorbed @ STP | 1D array  | cm³/g                  |
| the sum of sum time static sum of using | time                        | 1D array  | min                    |
| thermogravimetric analysis              | temperature                 | 1D array  | °C                     |

 Table 1: list of data produced by the various Mast3rBOOST experiments. The same experiment might appear multiple times with different data output when more partners are performing it with different equipment.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European Union nor the granting authority can be held responsible for them. Page 6 of 9





| Experiment                   | Data ontology                                | Data Type | Physical units           |
|------------------------------|----------------------------------------------|-----------|--------------------------|
|                              | weight                                       | 1D array  | mg                       |
|                              | heat flow                                    | 1D array  | mW                       |
|                              | temperature difference [°C]                  | 1D array  | °C                       |
|                              | temperature difference [raw]                 | 1D array  | μV                       |
|                              | sample purge flow                            | 1D array  | mL/min                   |
|                              | derivative weight                            | 1D array  | %/°C                     |
| nounder V rou diffraction    | 20 angle                                     | 1D array  | degrees                  |
| powder X-ray diffraction     | PSD or Intensity                             | 1D array  | counts                   |
|                              | wavenumber                                   | 1D array  | cm⁻¹                     |
| FTIR spectroscopy            | transmittance                                | 1D array  | adimensional             |
| scanning electron microscopy | SEM scan                                     | 3D array  | adimensional             |
|                              | elapsed time                                 | 1D array  | S                        |
|                              | stress                                       | 1D array  | MPa                      |
| tensile testing              | strain                                       | 1D array  | %                        |
|                              | ram displacement                             | 1D array  | mm                       |
|                              | force                                        | 1D array  | kN                       |
|                              | time                                         | 1D array  | s                        |
|                              | No. of cycles                                | 1D array  | adimensional             |
|                              | min load                                     | 1D array  | kN                       |
|                              | max load                                     | 1D array  | kN                       |
|                              | min displacement                             | 1D array  | mm                       |
| fatigue testing              | max displacement                             | 1D array  | mm                       |
|                              | min strain                                   | 1D array  | strains (adim.)          |
|                              | max strain                                   | 1D array  | strains (adim.)          |
|                              | min temperature                              | 1D array  | °C                       |
|                              | max temperature                              | 1D array  | °C                       |
| optical microscopy           | micrograph                                   | 2D array  | adimensional             |
| scanning electron microscopy | secondary electron / backscatter<br>electron | 2D array  | adimensional             |
| EBSD                         | orientation maps                             | 2D array  | adimensional             |
| EDX                          | EDX column A                                 | 1D array  | keV                      |
| LDA                          | EDX column B                                 | 1D array  | cps/eV                   |
| Hardness measurements        | indent number (multiple columns)             | 1D array  | adimensional             |
|                              | HV number (multiple columns)                 | 1D array  | Vickers hardness<br>(HV) |

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European Union nor the granting authority can be held responsible for them. Page 7 of 9





| Experiment                    | Data ontology       | Data Type | Physical units |
|-------------------------------|---------------------|-----------|----------------|
|                               | surface image       | 2D array  | adimensional   |
| - l'a constant a constant a c | height map          | 2D array  | adimensional   |
| alicona topography            | name                | 1D array  | adimensional   |
|                               | height              | 1D array  | μm             |
| adhesion test                 | adhesion test image | image     | adimensional   |
| scanning electron microscopy  | SEM micrograph      | image     | adimensional   |
| field emission SEM            | FE-SEM micrograph   | image     | adimensional   |
| EDX                           | EDX column A        | 1D array  | keV            |
| EDA                           | EDX column B        | 1D array  | cps/eV         |
| Particle size measurement     | particle size       | 1D array  | nm             |
| Particle size measurement     | intensity           | 1D array  | %              |
| Tota potential management     | zeta potential      | 1D array  | mV             |
| zeta potential measurement    | total counts        | 1D array  | adimensional   |
| 0CV                           | time                | 1D array  | S              |
| 007                           | potential           | 1D array  | V              |
|                               | frequency           | 1D array  | Hz             |
| EIS                           | impedance           | 1D array  | ohm            |
|                               | phase               | 1D array  | degrees        |
| LP                            | current             | 1D array  | mA             |
| L٣                            | potential           | 1D array  | V              |
| confocal                      | topographic image   | 3D array  | adimensional   |

LabCore database has been seeded with metadata tags mirroring the required ontology of the project's output data. Each definition includes the keyword "Mast3rBOOST", making it easier for the project partners to find and apply them to their data. Additionally, inventory metadata tags will also be added into the database. These carry information about the instruments and samples that ultimately produced the data records.

Through the Python API, these metadata tags will also improve the process of designing and testing material descriptors for machine-learning applications.

This list of metadata is meant to be only a starting point. As the project continues, it will be most likely necessary to extend it with new metadata designed to label processed results from new analysis methods and machinelearning descriptors. Moreover, the project data ontology shall be formalised with EMMO standards when appropriate.

#### 2. METHODOLOGY FOR HARMONIZED DATA ENTERING

It is expected that users will upload their data into digital notebooks, preferably including only one sample and its results into each one. Users have been instructed on how to operate the basic functionalities of LabCore in

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European Union nor the granting authority can be held responsible for them. Page 8 of 9





a tutorial session (<u>https://www.dropbox.com/sh/lctpzijjgbnze2z/AADsnnUPtiMfynWca1Q5L E-a?dl=0</u>). However, Nanolayers remains available to provide tutorials and support to new staff members when needed.

Half of the data harmonization is automatically done by LabCore when users upload their results in digital notebooks, since those are reformatted using the platform internal standards. This ensures that all data of the same type will have the same format, regardless of the original source and raw data format, thus making it readable and reusable.

Harmonization can be completed by applying the metadata ontology, which cannot be inferred when uploading data. The users have to diligently label their data, using the metadata tags listed in the previous section. Additionally, it will be necessary to label data with special tags for sample that originated it. These are the minimal set of the metadata required to make the data intelligible, however, users are free to add more tags, for example to clarify measurement conditions, and instrument sources. Users will also write details of their procedures in the notebook text, even if it is not strictly necessary and only for their own benefit.

With the minimal metadata tags (sample tag and ontology) it will be possible to pull the data systematically into tabular datasets, where the sample tag identifies row, and the ontology tag determines the column location of each entry.